Similarity Search Over Time-Series Data Using Wavelets
نویسندگان
چکیده
We consider the use of wavelet transformations as a dimensionality reduction technique to permit efficient similarity search over high-dimensional time-series data. While numerous transformations have been proposed and studied, the only wavelet that has been shown to be effective for this application is the Haar wavelet. In this work, we observe that a large class of wavelet transformations (not only orthonormal wavelets but also bi-orthonormal wavelets) can be used to support similarity search. This class includes the most popular and most effective wavelets being used in image compression. We present a detailed performance study of the effects of using different wavelets on the performance of similarity search for time-series data. We include several wavelets that outperform both the Haar wavelet and the best known non-wavelet transformations for this application. To ensure our results are usable by an application engineer, we also show how to configure an indexing strategy for the best performing transformations. Finally, we identify classes of data that can be indexed efficiently using these wavelet transformations.
منابع مشابه
Some New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملImproving Similarity Search in Time Series Using Wavelets
Sequences constitute a large portion of data stored in databases. Data mining applications require the ability to process similarity queries over a large amount of time series data. The query processing performance is an important factor that needs to be taken into consideration. This article proposes a similarity retrieval algorithm for time series. The proposed approach utilizes wavelet trans...
متن کاملUsing Wavelets and Splines to Forecast Non-Stationary Time Series
This paper deals with a short term forecasting non-stationary time series using wavelets and splines. Wavelets can decompose the series as the sum of two low and high frequency components. Aminghafari and Poggi (2007) proposed to predict high frequency component by wavelets and extrapolate low frequency component by local polynomial fitting. We propose to forecast non-stationary process u...
متن کاملA Novel Bit Level Time Series Representation with Implications for Similarity Search and Clustering
Because time series are a ubiquitous and increasingly prevalent type of data, there has been much research effort devoted to time series data mining in recent years. As with all data mining problems, the key to effective and scalable algorithms is choosing the right representation of the data. Many high level representations of time series have been proposed for data mining, including spectral ...
متن کاملA combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002